
SOFTWARE ASSURANCE WITH SAMATE REFERENCE DATASET, TOOL 
STANDARDS, AND STUDIES 

Paul E. Black, National Institute of Standards and Technology (NIST), Gaithersburg, MD 
 

Abstract 
Today's avionics systems depend more and 

more on software from many sources: vendors, 
subcontractors, in-house, and open source. System 
interactions are exposed to external agents in 
contexts from air-to-ground links to OS patches 
downloaded via the Internet. This is a huge amount 
of software with the risk of attack from distant 
global sites. Yet users need assurance that the 
software will work and not create security 
problems. 

We focus on NIST's Software Assurance 
Metrics And Tool Evaluation (SAMATE) project 
and its contribution. SAMATE is developing 
specifications, metrics, and automated test suites for 
software assurance tools. For instance, source code 
security analyzers can help developers produce 
software with fewer security flaws. They can also 
help identify malicious code and poor coding 
practices that lead to vulnerabilities. The project's 
publicly available reference dataset, the SRD, 
contains more than 1800 flawed (and fixed!) 
program examples to help evaluate software 
assurance tools and algorithms. These metrics and 
reference datasets help purchasers confirm tool 
vendors' claims. We also study the assurance 
impact of tool use, methods, and techniques. 

How Can One Get Good Software? 
The qualities needed in today’s software and 

systems cannot be “tested in”. Desirable properties, 
such as security, safety, and reliability, must be 
designed in and built in from the beginning. The 
development process must be such that users can 
rely upon the resulting systems or software. 

Is the user then left to depend on blind faith in 
artifacts produced? Clearly, no. Even with the most 
disciplined and well-characterized processes, 
artifacts must be examined to gain assurance that 
the output of the process is close to the target 
qualities. This is the essence of quality control.  

Concepts from quality control apply to 
software, although for different reasons. Software is 
not subject to manufacturing variations in the same 
sense as bullets or pencils. However today’s 
software and systems are far too complex to test 
absolutely every possibility or to formally verify 
everything. Discipline in the development process 
must compensate for post-production limits to 
testing and verification. Such limits are not unique 
to computers. Post-production assurance of hand 
grenade quality is also limited to testing only a 
sample of the production. 

Role of Post-Production Analysis 
Software must be tested, reviewed, verified, 

and otherwise analyzed after production to assure 
that desired levels of quality, safety, security, etc. 
are met, that no changes in the process or the 
environment have lowered the quality of the output. 
If we find assurance of required properties, the 
artifacts may be released. However if the post-
production analysis does not provide the assurance 
we need, some remediation may be feasible. In 
some cases, it may be cheaper and faster to reject 
the product, look for and address root causes, and 
begin again. 

Such analysis builds a strong assurance case 
quickly when the development process is well 
known and well characterized. But what can be 
done if the software is commercially acquired? 
Even a contractor needs to be qualified. What if 
there is a new software process to qualify? How can 
we gain assurance that legacy systems do and will 
perform acceptably in today’s complex systems and 
in the environment of electronic aggression from 
distant corners of the globe? In all these cases, and 
many more, we must rely largely on examination of 
the primary artifacts: the source code or binaries 
supplied. Examination may be some combination of 
testing, static analysis, review, and formal 
reasoning. Each of these approaches have different 
techniques which range from completely manual 
through machine assisted to highly or completely 
automated. For these reasons, NIST’s Software 



Assurance Metrics and Tool Evaluation (SAMATE) 
project began by characterizing analysis, especially 
tools, applicable after production [1]. 

Assurance in Hostile vs. Benign 
Environments 

Traditional software development is implicitly 
for a benign environment. The biggest threat is 
accidentally triggering a latent error. The 
assumption is that Nature does not try to cause 
system failures. Although collective wisdom in 
such forms as Murphy’s Law cautions us against 
complacency, the world today is much worse. The 
wide spread decay of morals and social values of 
honesty, vigilance, and restraint allow serious 
behavior to flourish and the Internet amplifies its 
global effect. No longer is the threat merely 
adolescents working for bragging rights or seeking 
a challenge. Threats come from extortionists, 
organized crime, educated and highly motivated 
criminals, and aggressive opponents trying to 
disrupt or even take control of services and 
capabilities. Rather than planning for random 
failure, we must assume that a single weak link can 
allow an entire system to be compromised. 

SAMATE Project Background 
The NIST SAMATE project began in 2005 

sponsored in part by the Department of Homeland 
Security. The goal was to develop methods, 
measures, and metrics to evaluate tools and 
techniques to determine how much they contribute 
to assurance. For instance, how much does the use 
of static source code analyzers help? How much 
assurance can we get from using test-driven 
development? More subtle questions ask whether 
the use of two techniques is additive or duplicative. 
For example, if a web interface is developed with 
the cleanroom approach, does running a web 
application scanner help enough to justify its use? 

We in the SAMATE project identify tools, 
recruit focus groups experienced in the 
development and use of tools, develop testable 
behavioral specifications and test plans, and collect 
and write test material. The test material is publicly 
available, so all may benefit. By “tools” we mean a 
bundle of functionalities with a coherent purpose or 
approach. A single computer program may combine 

several conceptual tools for ease of use, speed, 
resource and result sharing, etc. 

The project also organizes workshops and 
conference sessions to bring together researchers 
and users to foster collaboration, catalyze projects, 
and enhance communication. 

As previously noted, SAMATE began with 
two tools or tool classes: source code security 
analysis tools and web application scanning tools. 
Both are automated analysis tools which can be 
used after production. We begin with the latter. 

Web Application Scanners 
A web application is a program whose input 

and output is largely or primarily on the Internet, 
particularly the World Wide Web. Because of 
worldwide access, relative complexity, and rapid 
evolution, web applications are a spawning ground 
for vulnerabilities. A web application scanning tool, 
or web app scanner for short, heuristically tries 
dozens of different exploits and attacks on a web 
site and reports possible breaches it finds. 

One challenge for web app scanners is that 
vulnerabilities are often not immediately apparent. 
The web app scanner must probe the web site 
looking for hints of vulnerabilities, slight 
weaknesses, or trivial malfunctions. When 
combined, these may yield an exploitable 
vulnerability. Yet, there are dozens of ways to 
probe a web site. How can one test a web app 
scanner that should use many, but definitely not all, 
of these ways to thoroughly probe a web site? 

Another testing challenge is environmental 
complexity. SQL injection is a vulnerability in 
which the user can get SQL commands or command 
fragments through the web application front end 
into a database application. This allows the user to 
change or compromise data. To spur the web app 
scanner to exercise its SQL capabilities, the test 
environment must have most of the functionality of 
a database command handler and database tables. 
Another vulnerability, called cross-site scripting, 
occurs when a user can leave data on a web site, 
like a “comment”, that compromises later web 
browsers attempting to render the “comment”. So 
the test environment must supply much browser 
functionality, too. 



A simple test approach of watching for 
particular probes quickly reaches a limit. No 
scanner needs to send all conceivable probes or 
even classes of probes. Yet, trying just one probe is 
clearly inadequate. A more severe limitation is that 
without feedback from the “web site” (test harness) 
that, say, a database is used, the scanner will not 
even try advanced probes to seek an SQL injection 
vulnerability.  

A reasonable test approach is to simply build 
web applications with known vulnerabilities. 
Existing web servers, database products, and 
browser can be used to provide the infrastructure 
that web app scanners expect. Testers can examine 
the web app scanner report to determine if it finds 
and reports vulnerabilities. The OWASP WebGoat 
[2] is such an application, but with the purpose of 
teaching what to avoid. 

One problem with this approach is the possible 
misuse of vulnerable applications. There is a chance 
that somebody bases production work on the test 
application. It may be tempting to start with the 
code and “fix” the weaknesses. Unfortunately it is 
hard enough to make an application secure when 
that is the goal from the outset. Starting with code 
having deliberately planted vulnerabilities cannot 
help assurance. Worse yet, some vulnerabilities 
allow applications or the machine on which they are 
running to be corrupted or crashed. Web app 
scanners try to avoid crashing the site being 
examined. But if a machine running a test 
application were exposed to the web at large, it 
could be compromised or corrupted.  

Protocol for Researching Risky Software 
Clearly one must be careful when developing 

or using risky software, e.g. for testing. Risky 
software ranges from code with simple, known bugs 
to sophisticated worms and viruses with built-in 
polymorphic encoding and mutation engines to 
avoid detection. Such software may be root kits, 
which infect operating systems, or processes that 
contain many ways of invading and propagating to 
other hosts. It may be as innocuous as a bug that 
crashes the web server or database.  

Working with risky agents is not unique to the 
computer community. Medical laboratories have 
four categories or levels of infectious agents 

defined [3], which parallel those in recombinant 
DNA research. The levels depend on the organism’s 
potential to infect humans, the severity, and 
transmission vectors. For instance, “agents with a 
potential for respiratory transmission, and which 
may cause serious and potentially lethal infection” 
should be handled only at Biosafety Level 3 or 
above. Practices, safety equipment, and facilities 
are defined for each level. Also microorganisms 
may be engineered to be auxotrophs, that is, they 
cannot reproduce without some specific substance 
which does not occur in nature. 

Computer hazards are not confined to 
vulnerable web applications developed to test. Anti-
virus and anti-spyware companies work with code 
that might cause problems if it escapes. Protection 
agencies examine software that has deleterious 
effects on computer systems. Some colleges and 
universities assign students to write or work with 
viruses or malware to learn how to protect against 
it. At a minimum, software security trainees need 
practice with environments that have known 
vulnerabilities. Research labs for cell phone viruses, 
which have been demonstrated, or automobile 
Bluetooth links should be well isolated. 

Computer science researchers working with 
risky software have a laudable record. Apparently 
adequate precautions are being taken. But new 
people are beginning such work. It would be helpful 
for them to have clear guidelines on what 
safeguards are prudent for what kinds of research 
with different kinds of risky software. 

A web application, built for testing, with 
carefully introduced vulnerabilities might crash a 
server. Making the web application the computer 
analogy to an auxotroph may be sufficient. For 
instance, the application would refuse to run unless 
some file, like enableRiskyWebApp, is present 
or the system date is set to a specific year, like 
2059. Other isolation possibilities are running on 
computers with no data connection to the outside (a 
so-called “air gap”) or having network cards and 
USB storage device drivers removed. 

We are planning to organize workshops to 
define levels or classes of risky software and 
develop protocols and recommendations for 
researching them. 



Source Code Security Analysis Tools 
The second class of tool functionality the 

SAMATE project is working on is source code 
security analysis tools. 

“Source code security analysis tools scan a 
textual (human readable) version of source 
files that comprise a portion or all of an 
application program. These files may 
contain inadvertent or deliberate 
weaknesses that could lead to security 
vulnerability in the executable version of 
the application program.” [4] 
The work so far has produced a number or 

results. We released version 1.0 of a testable 
specification for such analyzers, have a draft test 
plan, and have written or collected several hundred 
programs and program snippets as test cases. In 
developing a specification for this tool class, we 
needed to address the different weaknesses that are, 
could, or should be caught. How could we have 
confidence that the assessment was thorough 
without a list of all (or all known) weaknesses? 

In our August 2005 workshop, we brought up 
the need for a comprehensive, common list of 
software weaknesses and proposed a solution [5]. 
Since we had brought together many who had 
worked on taxonomies, this catalyzed the Common 
Weakness Enumeration (CWE) [6]. 

The specification for source code security 
analyzers consists of six mandatory features and 
three optional features, along with Annex A, a list 
of 21 weaknesses, and Annex B, a list of code 
complexities. Code complexities do not strictly 
affect the weakness, but do complicate analysis. 
Some complexities are loops, global or local 
variables, interprocedural calls, and indirection. 
Briefly, the requirements for mandatory features are 

• Identify all weaknesses in Annex A. 
• Report any weaknesses identified. 
• Use a meaningful name for weaknesses. 
• Give their directory, file, and line. 
• Handle code complexities in Annex B. 
• Have a low false positive rate. 
We don’t consider features dealing with ease 

of installation or use, integration with other tools, 
cost, or other important facets. Most of the 

requirements are straightforward, but why require a 
low false positive rate? Different uses have different 
acceptable rates. For a low criticality application 
just beginning to use a source code security 
analyzer, more than about 20 % false alarms may 
lead to rejection of the tool. On the other hand 
developers of a security-critical application may 
tolerate lots of false positive to minimize the chance 
of missing a real vulnerability. Since the 
requirement lacks a testable measure, why not 
remove it? NIST procedure is to only comment on 
requirements. Since the false positive rate is very 
important, we left the requirement. We plan studies 
and experiments to come up with a specific rate or 
rate classes for a future version. 

The requirements for optional features are: 

• Produce an XML-formatted report. 
• Not report a suppressed weakness.  
• Use the CWE name for weaknesses. 
These are forward looking requirements. The 

XML formatting is for tool interoperability. Since 
there is no widely used standard, we don’t specify 
the format to use. For greatest productivity, users 
need to be able to suppress the report of known 
weaknesses. They may be tolerated for many 
reasons: it is not really a weakness, something else 
in the system makes exploit of the weakness 
impossible, resources might better be used to fix 
other vulnerabilities, the risk is very low, etc. 

When the CWE has matured, the requirement 
to use CWE names will replace the requirement to 
use meaningful names. 

There are 175 test cases in C alone for the 
current draft test plan. C++ has about the same 
number, while Java has far fewer, since many 
common weaknesses cannot occur in Java at all. In 
addition to these test cases, we have an order of 
magnitude more examples that others and we have 
gathered or written for various investigations. For 
maximum flexibility and community benefit, we 
implemented a publicly accessible, on-line 
reference dataset to hold all these and more. 

SAMATE Reference Dataset (SRD) 
The SAMATE Reference Dataset, or SRD, is a 

web-accessible database to search and share 
examples of code. There are currently more than 



1800 entries of code in C, C++, Java, and PHP. 
Most of the entries have specific known 
weaknesses, although many have associated code 
with the weakness fixed. This corresponding 
“good” code is used to determine false positive 
rates. Each example has fields for meta-
information, like author, submission date, a prose 
description, inputs to exploit the vulnerability, 
expected output, and compiler flags. The SRD also 
has test suites, which are defined sets of test cases. 

The vast majority of the entries are small 
programs specifically written to illustrate some 
weakness. Some entries came from popular Internet 
applications, such as bind, sendmail, and wu-ftp, 
with known vulnerabilities [7]. Many other users, 
researchers, companies, and developers generously 
donated large and small sets of examples collected 
for various reasons. 

The SRD is not limited to source code. The 
SRD can handle binaries and bytecode programs, 
which will be added to examine binary analyzers. 
We will also add examples in other languages, such 
as SPARK, Ada, and C#.  

We planned the SRD to be a public resource. 
Users can search the test cases by language, 
description, author, weakness, status, strings in the 
source code, and many combinations. Registered 
users can comment on any test case, adding results 
of using certain tools or algorithms, observations on 
the legitimacy or limitations of the example, 
suggestions referring to related entries, etc. 
Approved people can add their own test cases or 
test suites to the SRD. Our goal is for the SRD to 
increasingly be a forum to exchange test material. 

To serve as a foundation for research, the 
source code (or binaries, in the future) never 
change. Meta-information may be corrected, but the 
entries themselves are not fixed or modified. Thus 
when a researcher cites a certain suite of test cases, 
later developers can retrieve exactly the same test 
cases to see the improvement with a new algorithm. 
If an entry is determined to be bad, it can be marked 
as deprecated, and a replacement entry added. 
Deprecated entries should not be used for new 
work, and are not usually returned for searches, but 
they are still in the SRD. 

Please contribute test cases your organization 
or you have developed to the SRD. Research and 

development of better tools and techniques could be 
sped up with a rich source of realistic examples. 
Although many people use the SRD, we are looking 
for comments and suggestions to improve it. 

Determining the Tool Efficacy 
All this work leads to one primary question: 

how much do tools or techniques really help? In 
addition to developing standards and test materials, 
we have studies in progress. Dawson Engler asked, 
“Do software assurance tools really help improve 
security?” [8]. Certainly tools find weaknesses that 
can be, and are, fixed. But do tools find weaknesses 
that would be exploited if not fixed? Does fixing 
reported weaknesses introduce other, more subtle 
vulnerabilities? Perhaps the time teams spend 
checking what turns out to be false positives or 
fixing unimportant flaws could better be used in 
code reviews or design analysis. Rescorla studied 
whether searching for vulnerabilities increases 
security, but did not find clear evidence to support it 
[9]. Our preliminary studies of the effect of static 
analysis tools on software assurance have been 
similarly inconclusive [10]. 

As we said in the beginning, quality, security, 
safety, and other important properties must be 
designed in and built in from the beginning. We do 
not yet know how much tools and techniques 
contribute to assurance. There are many 
confounding factors to resolve, such as increased 
program use, misattributing vulnerabilities in other 
programs, program size, seasonal effects (“back to 
school”), and developer experience, to name a few. 
However we know that tools can give feedback on 
the development process and help developers learn 
what to avoid. 

For further studies, we need your software 
development data: number of flaws found, type of 
weakness, number fixed, how found, etc. At NIST 
we are quite willing to operate under strict non-
disclosure agreements. We have a reputation for 
handling the most sensitive of information. 
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